News
Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion
Time:2024-08-12   Hits:997

Title: Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion

DOI: https://doi.org/10.1007/s41230-024-4026-5

Author:  

*Yan-peng Wei, Huai-qian Li, Jing-jing Han, Ying-chun Ma, Hao-ran Zhou, Jing-chang Cheng, Jian Shi, Zhi-quan Miao, Bo Yu, and Feng Lin

Corresponding author: 

*Yan-peng Wei
Male, born in 1990, Ph. D., Senior Engineer. His research interests mainly focus on the special alloy design, metallic lattice structures preparation and additive manufacturing process development.

E-mail: wyp20@mails.tsinghua.edu.cn

Abstract: 

Lattice metamaterials based on three-period minimum surface (TPMS) are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships. However, its vibration and noise reduction, and damping properties have not been fully studied. Therefore, in this study, the TPMS structures with parameterization were designed by the method of surface migration, and the TPMS structures with high forming quality was manufactured by laser powder bed fusion (LPBF). The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression. The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis, and the damping properties of two structures were obtained by modal tests. For the two structures after heat treatment with the same porosity of 70%, the yield strength of the beam lattice structure reaches 40.76 MPa, elastic modulus is 20.38 GPa, the energy absorption value is 32.23 MJ·m−3, the damping ratio is 0.52%. The yield strength, elastic modulus, energy absorption value and damping ratio of the TPMS structure are 50.74 MPa, 25.37 GPa, 47.34 MJ·m−3, and 0.99%, respectively. The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption, better damping performance, and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.

Free full text: https://link.springer.com/article/10.1007/s41230-024-4026-5

If you'd like to learn more, please get it free at the following website

https://www.springer.com/journal/41230 or 

http://www.foundryworld.com/en/indexzhong.php/zazhishe/chinaguokan/type/3

Scan the QR code to download the papers published by China Foundry journal from 2020 to 2024

Related papers

Research progress in CALPHAD assisted metal additive manufacturing 

CALPHAD辅助金属增材制造的研究进展(Vol. 21 No. 4, 2024)

Ya-qing Hou, Xiao-qun Li, Wei-dong Cai, Qing Chen, Wei-ce Gao, Du-peng He, Xue-hui Chen, and Hang Su中国钢研科技集团有限公司

DOI: https://doi.org/10.1007/s41230-024-3146-2

引用格式:Hou Y Q, Li X Q, Cai W D, et al. Research progress in CALPHAD assisted metal additive manufacturing. China Foundry, 2024, 21(4): 295–310.


Cracking on a nickel-based superalloy fabricated by direct energy deposition 

能量沉积镍基高温合金中的裂纹研究(Vol. 21 No. 4, 2024)

Xue Zhang, Ya-hang Mu, Liang Ma, Jing-jing Liang, Yi-zhou Zhou, Xiao-feng Sun, and Jin-guo Li中国科学技术大学

DOI: https://link.springer.com/article/10.1007/s41230-024-3111-0

引用格式:Zhang X, Mu Y H, Ma L, et al. Cracking on a nickel-based superalloy fabricated by direct energy deposition. China Foundry, 2024, 21(4): 311–318.


Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure 

采用内部拓扑结构的3D打印砂型消除不锈钢机匣裂纹(Vol. 21 No. 4, 2024)

Jun-hang Xu, Bao-zhi Li, Zhao-wei Song, Yun-bao Gao, Jing-ming Li, Yu Wang, Qiu-lin Wen, Heng Cao, and Zeng-rui Wang中国机械总院集团沈阳铸造研究所有限公司

DOI: https://doi.org/10.1007/s41230-024-3118-6

引用格式:Xu J H, Li B Z, Song Z W, et al. Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure. China Foundry, 2024, 21(4): 319–326.


Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion 

激光粉末床熔融法制备TPMS点阵超材料的力学和阻尼性能研究(Vol. 21 No. 4, 2024)

Yan-peng Wei, Huai-qian Li, Jing-jing Han, Ying-chun Ma, Hao-ran Zhou, Jing-chang Cheng, Jian Shi, Zhi-quan Miao, Bo Yu, and Feng Lin中国机械总院集团沈阳铸造研究所有限公司

DOI: https://doi.org/10.1007/s41230-024-4026-5

引用格式:Wei Y P, Li H Q, Han J J, et al. Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion. China Foundry, 2024, 21(4): 327–333.


Advancements in machine learning for material design and process optimization in the field of additive

manufacturing

基于机器学习的增材制造材料设计及工艺优化研究进展(Vol. 21 No. 2, 2024

Hao-ran Zhou, Hao Yang, Huai-qian Li, Ying-chun Ma, Sen Yu, Jian shi, Jing-chang Cheng, Peng Gao, Bo

Yu, Zhi-quan Miao, and Yan-peng Wei(中国机械总院集团沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-024-3145-3

引用格式:Zhou H R, Yang H, Li H Q, et al. Advancements in machine learning for material design and

process optimization in the field of additive manufacturing. China Foundry, 2024, 21(2): 101-115.


Droplet morphology analysis of drop-on-demand inkjet printing

喷墨打印过程微液滴飞行形态模拟研究Vol. 21 No. 1, 2024

Hu-xiang Xia, Takechi Kensuke, Tajima Shin, Kawamura Yoshiumi, and Qing-yan Xu(清华大学)

DOI: https://doi.org/10.1007/s41230-023-2106-6

引用格式:Xia H X, Kensuke T, Shin T, et al. Droplet morphology analysis of drop-on-demand inkjet printing. China Foundry, 2024, 21(1): 20-28.


Effect of printing parameters on properties of 3D printing sand samples

打印参数对3D打印砂样性能的影响Vol. 20 No. 6, 2023

De-quan Shi, Yin-yu Hou, and Gui-li Gao(上海理工大学)

DOI: https://doi.org/10.1007/s41230-023-3002-9


Preparation of coated sand for selective laser sintering and optimization of baking process of sand moulds

选区激光烧结用覆膜砂的制备及砂模后处理工艺的优化Vol. 20 No. 6, 2023

Peng-wei Wang, Rui-long Yu, Rui Tan, Yan Wang, Ying-wei Zhou, Yue-ting Ma, Yan-hai Li, Jia-jun Liu, and Shao-kui Yin(中国机械总院集团沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-023-3101-7


Effect of sintering temperature on microstructure and properties of 3D printing polysilazane reinforced Al2O3 core

烧结温度对3D打印聚硅氮烷增强Al2O3型芯微观结构和性能的影响Vol. 20 No. 5, 2023

Wen-jun Dong, Qiao-lei Li, Tian-ci Chen, Ming-ke Zou, Jing-jing Liang, Li-rong Liu, Hui Mei, and

Jin-guo Li(沈阳工业大学)

DOI: https://doi.org/10.1007/s41230-023-2122-6


A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy designed using cluster-plus-glue-atom model for laser additive manufacturing

基于团簇模型的激光增材制造用Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si合金成分设计Vol. 20 No. 5, 2023

Tian-yu Liu, Yan-chun Lou, Shuang Zhang, Zhi-hao Zhu, Jun Zhao, Shi-bing Liu, Kun Shi, and Ning Zhao(中国机械总院集团沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-023-3019-0


Strengthening and toughening of additively manufactured Ti-6Al-4V alloy by hybrid deposition and synchronous micro-rolling

混合沉积与同步微轧制增材制造Ti-6Al-4V的强韧化Vol. 20 No. 3, 2023

Kui Cheng, Hao Song, Xin-wang Liu, Ming-bo Zhang, Fei-hu Shan, Kun He, Zi-tian Fan, Gui-lan Wang, and Hai-ou Zhang(华中科技大学)

DOI: https://doi.org/10.1007/s41230-023-2115-5


The compression behavior of 316L lattice structures produced by indirect additive manufacturing

间接增材制造316L点阵结构的压缩力学行为研究Vol. 20 No. 2, 2023

Yan-peng Wei, Hao Yang, Jing-chang Cheng, Peng Gao, Jian Shi, Feng Lin, and Bo Yu

(中国机械总院集团沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-023-2143-1


Fabrication of silica-based ceramic cores with internal lattice structures by stereolithography

点阵结构中空陶瓷型芯的光固化增材制造Vol. 19 No. 5, 2022

Ke-hui Hu, Hao-yuan Wang, Kuan Lu, Qian Feng, Dao-ding Yang, Jian Cao, Bo Zhang, Zhi-gang Lü, and Xing Ran(清华大学)

DOI: https://doi.org/10.1007/s41230-022-2048-4


Application of transparent casting moulds prepared by additive manufacturing technology in hydraulic simulation

基于增材制造技术制备的透明铸型在水力学模拟中的应用Vol. 19 No. 4, 2022

Qian Feng, Xing Ran, Ke-hui Hu, Hao-yuan Wang, and Zhi-gang Lü(清华大学)

DOI: https://doi.org/10.1007/s41230-022-1163-6


Effect of processing parameters on formability, microstructure, and micro-hardness of a novel laser additive manufactured Ti-6.38Al-3.87V-2.43Mo alloy

工艺参数对激光增材制造Ti-6.38Al-3.87V-2.43Mo合金成形性、组织和显微硬度的影响(Vol. 19 No. 2, 2022

Tian-yu Liu, Zhi-hao Zhu, Shuang Zhang, Xiao-hua Min, and Chuang Dong(大连理工大学)

DOI: https://doi.org/10.1007/s41230-022-1066-6


Microstructure and mechanical properties of laser additive manufactured novel titanium alloy after heat treatment

激光增材制造新型钛合金热处理后的组织和力学性能Vol. 18 No. 6, 2021

Tian-yu Liu, Hong-yu Liu, Qian Yao, et al(沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-021-1089-4


Effect of gel time of 3D sand printing binder system on quality of sand mold/core

3D打印粘结剂凝胶时间对砂型/芯质量的影响(Vol. 18 No. 6, 2021

Yan Wang, Rui-long Yu, Shao-kui Yin, et al(沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-021-1085-8


Development of 3D printing entity slicing software

3D打印实体切片软件开发(Vol. 18 No. 6, 2021

Yang Guan, Xun Sun, Lei Jin, et al(沈阳铸造研究所有限公司)

DOI: https://doi.org/10.1007/s41230-021-1090-y


Effect of mould baffle technology on stray grain formation in single crystal blades by integral fabrication based on 3D printing

基于3D打印的模具挡板技术对一体成型单晶叶片杂晶形成的影响Vol. 18 No. 5, 2021

Zhe-feng Liu, Kai Miao, Wei-bo Lian, et al(西安交通大学)

DOI: https://doi.org/10.1007/s41230-021-1073-z


Tailoring microstructure evolution and mechanical properties of a high-performance alloy steel through controlled thermal cycles of a direct laser depositing process

通过控制激光直接沉积过程的热循环调整高性能合金钢的组织演变和力学性能Vol. 18 No. 5, 2021

Shi-yun Dong, Xuan Zhao, Shi-xing Yan, et al(陆军装甲兵学院)

DOI: https://doi.org/10.1007/s41230-021-1124-5


A review of additive manufacturing technology and its application to foundry in China

增材制造技术在我国铸造领域中的应用综述(Vol. 18 No. 4, 2021

Shi-yan Tang, Li Yang, Zi-tian Fan, et al(华中科技大学)

DOI: https://doi.org/10.1007/s41230-021-1003-0


In situ monitoring methods for selective laser melting additive manufacturing process based on images - A review

基于图像的选区激光熔化增材制造过程中的原位监测方法综述(Vol. 18 No. 4, 2021

Bo Wu, Xiao-yuan Ji, Jian-xin Zhou, et al(华中科技大学)

DOI: https://doi.org/10.1007/s41230-021-1111-x


Additive manufacturing and foundry innovation

增材制造与创新铸造(Vol. 18 No. 4, 2021

Yu-sheng Shi, Jin-liang Zhang, Shi-feng Wen, et al(华中科技大学)

DOI: https://doi.org/10.1007/s41230-021-1008-8


Rapid casting technology based on selective laser sintering

基于选区激光烧结的快速铸造技术Vol. 18 No. 4, 2021

Li Yang, Shi-yan Tang, Zi-tian Fan, et al(华中科技大学)

DOI: https://doi.org/10.1007/s41230-021-1099-2


Mechanical properties of TiAl fabricated by electron beam melting - A review

电子束熔化成型TiAl合金的力学性能综述(Vol. 18 No. 4, 2021

Bo-chao Lin, Wei Chen(中国航空制造技术研究院)

DOI: https://doi.org/10.1007/s41230-021-1093-8


A review on metal additive manufacturing: modeling and application of numerical simulation for heat and mass transfer and microstructure evolution

金属增材制造综述:传热、传质和组织演变数值模拟的建模与应用(Vol. 18 No. 4, 2021

Chuan-ming Liu, Hua-bing Gao, Li-yu Li, et al(哈尔滨工程大学)

DOI: https://doi.org/10.1007/s41230-021-1119-2


Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength

粘结剂喷射3D打印快速铸造用高抗拉强度型芯的工艺优化(Vol. 18 No. 4, 2021

Zhao-fa Zhang, Li Wang, Lin-tao Zhang, et al(西安交通大学)

DOI: https://doi.org/10.1007/s41230-021-1057-z


Sand-bed defect recognition for 3D sand printing based on deep residual network

基于深度残差网络的3D打印砂床缺陷识别(Vol. 18 No. 4, 2021

Lan-xiu Wang, Xuan-pu Dong, Shu-ren Guo(华中科技大学)

DOI: https://doi.org/10.1007/s41230-021-1091-x


Performance of Ti6Al4V fabricated by electron beam and laser hybrid preheating and selective melting strategy

电子束-激光混合预热选区熔化法制备Ti6Al4V合金的性能(Vol. 18 No. 4, 2021

Mo-han Hao, Lei Zhang, Bin Zhou, et al(清华大学)

DOI: https://doi.org/10.1007/s41230-021-1039-1


Laser ultrasonic testing for near-surface defects inspection of 316L stainless steel fabricated by laser powder bed fusion

激光超声检测激光粉床熔覆制备316L不锈钢的近表面缺陷(Vol. 18 No. 4, 2021

Ting Dai, Xiao-jian Jia, Jun Zhang, et al(东南大学)

DOI: https://doi.org/10.1007/s41230-021-1063-1


Effects of geometrical characteristics on defect distributions in alloy components produced by selective laser melting

几何特征对选区激光熔化制备合金部件中缺陷分布的影响(Vol. 18 No. 4, 2021

Yao Cai, Tao Lu, Gui-dian Ma, et al(东南大学)

DOI: https://doi.org/10.1007/s41230-021-1048-0


Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718

激光参数对选区激光熔化Inconel 718过程中Nb偏析的影响(Vol. 18 No. 4, 2021

Liang Wang, Ran Cui, Bin-qiang Li, et al(哈尔滨工业大学)

DOI: https://doi.org/10.1007/s41230-021-1088-5


Influence of hot isostatic pressing on microstructure, properties and deformability of selective laser melting TC4 alloy

热等静压对选区激光熔化TC4合金组织、性能和变形性能的影响(Vol. 18 No. 4, 2021

Tai-qi Yan, Bing-qing Chen, Xia Ji, et al(北京航空材料研究院)

DOI: https://doi.org/10.1007/s41230-021-1086-7


Phase constitution, microstructure and mechanical properties of a Ni-based superalloy specially designed for additive manufacturing

一种增材制造专用镍基高温合金的相组成、显微组织和力学性能Vol. 18 No. 4, 2021

Bin Wu, Jing-jing Liang, Yan-hong Yang, et al(中国科学院金属研究所)

DOI: https://doi.org/10.1007/s41230-021-9025-1


Transient printing characteristics with wavy build profiles for laser additive manufacturing of small size structures

激光增材制造小尺寸结构过程中波形轮廓的瞬态打印特性(Vol. 18 No. 4, 2021

Fu-qin Liu, Hui-liang Wei, Lei Wei, et al(南京理工大学)

DOI: https://doi.org/10.1007/s41230-021-1001-2


Microstructure and properties of AlSi7Mg alloy fabricated by selective laser melting

选区激光熔化AlSi7Mg合金的组织与性能Vol. 18 No. 4, 2021

Shuai Huang, Shao-qing Guo, Biao Zhou, et al(北京航空材料研究院)

DOI: https://doi.org/10.1007/s41230-021-1004-z


Design for Ti-Al-V-Mo-Nb alloys for laser additive manufacturing based on a cluster model and on their microstructure and properties

基于团簇模型的激光增材制造用Ti-Al-V-Mo-Nb合金成分设计及其组织性能研究(Vol. 18 No. 4, 2021

Tian-yu Liu, Zhi-hao Zhu, Shuang Zhang, et al(大连理工大学)

DOI: https://doi.org/10.1007/s41230-021-1065-z


Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting 

激光扫描速度对选择性激光熔化 Inconel 718 合金组织和力学性能的影响(Vol. 18 No. 3, 2021

Hong-ying Wang, Bin-bin Wang, Liang Wang, et al(哈尔滨工业大学)

DOI: https://doi.org/10.1007/s41230-021-9011-7


Grain selection and growth orientation of prior-β phase for Ti-6-4 during additive manufacturing:

insights from a modeling perspective

Ti-6-4增材制造过程中初生β相晶粒筛选与生长方向的模拟研究(Vol. 18 No. 2, 2021

Wei-zhao Sun, Fei-hu Shan, Nan-fu Zong, et al(清华大学)

DOI: https://doi.org/10.1007/s41230-021-9002-8